Technical Papers

Simulation of Three-Dimensional Pore-Pressure Distribution for Slope-Stability Analysis

Abstract:

A 3D groundwater flow model was constructed using MINEDW [1] to simulate pore pressure at the Chuquicamata open pit mine slope in Chile. Three main factors required the implementation of a 3D model for the prediction of pore pressures: (1) discrete zones of recharge in the gravel zone lead to the non-uniform flow field; (2) the low-permeability west fault and shear zones maintain the non-hydrostatic pore-pressure distribution with depth during mining; and (3) the drainage gallery causes localized depressurization. In addition, a zone of relaxation (ZOR) was observed at the site. Simulations of the development of the ZOR according to the mining schedule are important in the prediction of pore-pressure distribution within the slope.

The model was calibrated against measured water levels, pore pressures, drains, and seepage rates. The calibrated model was then used to simulate and predict pore-pressure distribution in the pit walls for different time periods. Specifically, the model was able to capture the non-hydrostatic, transient nature of the pore pressures with depth in the granodiorite west of the shear zone, in the shear zone, and along the west fault. The model also simulated the ZOR for the first 150 m below the pit bench with enhanced hydraulic conductivity values according to the excavation schedule. Simulated transient 3D pore-pressure distribution provides a more realistic input to 3DEC slope-stability analyses.

Citation:

Liu, H., F. Duran del Valle, J. Xiang, and B. Șener Kaya. 2012. Simulation of three-dimensional pore-pressure distribution for slope-stability analysis. 46th US Rock Mechanics/Geomechanics Symposium, Chicago, IL, 24-27 June.

Authors:

Houmao Liu

Jianwei Xiang

Link to Full Text:

Pore-Pressure Distributions.pdf

Latest News
  • Seamless Integration of Site Data for Improved Mining Analysis Now Available for IMAT: Seamless Integration of Site Data for Improved Mining Analysis...
    Read More
  • Now Available from ITASCA: Innovative Machine Learning Tool for FLAC3D/FLAC2D V9.2 Experience the Future of Geotechnical Modeling with ITASCA Software V9.2: Introducing Machine Learning Models...
    Read More
  • Experience the Future of Geotechnical Modeling with ITASCA Software V9.2 Experience the Future of Geotechnical Modeling with ITASCA Software V9.2: Introducing Machine Learning Models and...
    Read More

Upcoming Events
12 May
“Getting Started With Dynamic Modeling in FLAC3D
This training supplies the tools needed to describe and apply the workflow for dynamic analysis in FLAC3D, demonstrating a comprehensiv... Read More
11 Jun
Python in Itasca Software
This course provides an overview of the Python programming language in Itasca software.The course covers major applications of Python t... Read More
16 Jun
IMAT Training: Revolutionizing Mining Analysis with Seismology & Numerical Modeling
Hands-on learning with IMAT’s latest upgrade enhances mine modeling and seismology, uniting open-pit and underground mining capabilitie... Read More